Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Epigenetics ; 16(1): 65, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741114

RESUMEN

OBJECTIVE: Youth-onset type 2 diabetes (T2D) is physiologically distinct from adult-onset, but it is not clear how the two diseases differ at a molecular level. In utero exposure to maternal type 2 diabetes (T2D) is known to be a specific risk factor for youth-onset T2D. DNA methylation (DNAm) changes associated with T2D but which differ between youth- and adult-onset might delineate the impacts of T2D development at different ages and could also determine the contribution of exposure to in utero diabetes. METHODS: We performed an epigenome-wide analysis of DNAm on whole blood from 218 youth with T2D and 77 normoglycemic controls from the iCARE (improving renal Complications in Adolescents with type 2 diabetes through REsearch) cohort. Associations were tested using multiple linear regression models while adjusting for maternal diabetes, sex, age, BMI, smoking status, second-hand smoking exposure, cell-type proportions and genetic ancestry. RESULTS: We identified 3830 differentially methylated sites associated with youth T2D onset, of which 3794 were moderately (adjusted p-value < 0.05 and effect size estimate > 0.01) associated and 36 were strongly (adjusted p-value < 0.05 and effect size estimate > 0.05) associated. A total of 3725 of these sites were not previously reported in the EWAS Atlas as associated with T2D, adult obesity or youth obesity. Moreover, three CpGs associated with youth-onset T2D in the PFKFB3 gene were also associated with maternal T2D exposure (FDR < 0.05 and effect size > 0.01). This is the first study to link PFKFB3 and T2D in youth. CONCLUSION: Our findings support that T2D in youth has different impacts on DNAm than adult-onset, and suggests that changes in DNAm could provide an important link between in utero exposure to maternal diabetes and the onset of T2D.


Asunto(s)
Metilación de ADN , Diabetes Mellitus Tipo 2 , Efectos Tardíos de la Exposición Prenatal , Humanos , Diabetes Mellitus Tipo 2/genética , Femenino , Metilación de ADN/genética , Embarazo , Adolescente , Masculino , Efectos Tardíos de la Exposición Prenatal/genética , Epigénesis Genética/genética , Edad de Inicio , Niño , Estudios de Casos y Controles , Diabetes Gestacional/genética , Adulto , Epigenoma/genética
2.
Front Endocrinol (Lausanne) ; 13: 934706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36303872

RESUMEN

Objective: Rates of type 2 diabetes (T2D) among adolescents are on the rise. Epigenetic changes could be associated with the metabolic alterations in adolescents with T2D. Methods: We performed a cross sectional integrated analysis of DNA methylation data from peripheral blood mononuclear cells with serum metabolomic data from First Nation adolescents with T2D and controls participating in the Improving Renal Complications in Adolescents with type 2 diabetes through Research (iCARE) cohort study, to explore the molecular changes in adolescents with T2D. Results: Our analysis showed that 43 serum metabolites and 36 differentially methylated regions (DMR) were associated with T2D. Several DMRs were located near the transcriptional start site of genes with established roles in metabolic disease and associated with altered serum metabolites (e.g. glucose, leucine, and gamma-glutamylisoleucine). These included the free fatty acid receptor-1 (FFAR1), upstream transcription factor-2 (USF2), and tumor necrosis factor-related protein-9 (C1QTNF9), among others. Conclusions: We identified DMRs and metabolites that merit further investigation to determine their significance in controlling gene expression and metabolism which could define T2D risk in adolescents.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Adolescente , Diabetes Mellitus Tipo 2/metabolismo , Metilación de ADN , Estudios Transversales , Estudios de Cohortes , Leucocitos Mononucleares/patología , Metaboloma
3.
Diabetologia ; 65(4): 733-747, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35091821

RESUMEN

AIMS/HYPOTHESIS: Obesity and hepatic steatosis are risk factors for gestational diabetes mellitus (GDM), a common complication of pregnancy. Adiponectin is a fat-derived hormone that improves hepatic steatosis and insulin sensitivity. Low levels of circulating adiponectin are associated with GDM development. We hypothesised that adiponectin deficiency causes fatty liver during pregnancy, contributing to the development of GDM. METHODS: To determine the role of adiponectin in fatty liver development during pregnancy, we compared pregnant (third week of pregnancy) adiponectin knockout (KO) mice (strain B6;129-Adipoqtm1Chan/J) with wild-type mice and assessed several variables of hepatic lipid metabolism and glucose homeostasis. The impact of adiponectin supplementation was measured by administering adenovirus-mediated full-length adiponectin at the end of the second week of pregnancy and comparing with green fluorescent protein control. RESULTS: In the third week of pregnancy, fasted pregnant adiponectin KO mice were hyperglycaemic on a low-fat diet (9.2 mmol/l vs 7.7 mmol/l in controls, p<0.05) and were glucose and pyruvate intolerant relative to wild-type mice. Pregnant adiponectin KO mice developed hepatic steatosis and a threefold elevation in hepatic triacylglycerols (p<0.05) relative to wild-type mice. Gestational weight gain and food consumption were similar in KO and wild-type mice. Adenoviral-mediated adiponectin supplementation to pregnant adiponectin KO mice improved glucose tolerance, prevented fasting hyperglycaemia and attenuated fatty liver development. CONCLUSIONS/INTERPRETATION: Adiponectin deficiency increased hepatic lipid accumulation during the period of pregnancy associated with increased fat utilisation. Consequently, adiponectin deficiency contributed to glucose intolerance, dysregulated gluconeogenesis and hyperglycaemia, all of which are characteristic of GDM. Increasing adiponectin in the last week of pregnancy alleviated hepatic steatosis and restored normal glucose homeostasis during pregnancy.


Asunto(s)
Diabetes Gestacional , Hígado Graso , Hiperglucemia , Resistencia a la Insulina , Adiponectina/deficiencia , Adiponectina/metabolismo , Animales , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Hígado Graso/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Hiperglucemia/metabolismo , Hígado/metabolismo , Errores Innatos del Metabolismo , Ratones , Ratones Noqueados , Embarazo
4.
J Physiol ; 597(16): 4175-4192, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31240717

RESUMEN

KEY POINTS: Maternal resveratrol (RESV) administration in gestational diabetes (GDM) restored normoglycaemia and insulin secretion. GDM-induced obesity was prevented in male GDM+RESV offspring but not in females. GDM+RESV offspring exhibited improved glucose tolerance and insulin sensitivity. GDM+RESV restored hepatic glucose homeostasis in offspring. Glucose-stimulated insulin secretion was enhanced in GDM+RESV offspring. ABSTRACT: Gestational diabetes (GDM), the most common complication of pregnancy, is associated with adverse metabolic health outcomes in offspring. Using a rat model of diet-induced GDM, we investigated whether maternal resveratrol (RESV) supplementation (147 mg kg-1  day-1 ) in the third week of pregnancy could improve maternal glycaemia and protect the offspring from developing metabolic dysfunction. Female Sprague-Dawley rats consumed a high-fat and sucrose (HFS) diet to induce GDM. Lean controls consumed a low-fat (LF) diet. In the third trimester, when maternal hyperglycaemia was observed, the HFS diet was supplemented with RESV. At weaning, offspring were randomly assigned a LF or HFS diet until 15 weeks of age. In pregnant dams, RESV restored glucose tolerance, normoglycaemia and improved insulin secretion. At 15 weeks of age, GDM+RESV-HFS male offspring were less obese than the GDM-HFS offspring. By contrast, the female GDM+RESV-HFS offspring were similarly as obese as the GDM-HFS group. Hepatic steatosis, insulin resistance, glucose intolerance and dysregulated gluconeogenesis were observed in the male GDM offspring and were attenuated in the offspring of GDM+RESV dams. The dysregulation of several metabolic genes (e.g. ppara, lpl, pepck and g6p) in the livers of GDM offspring was attenuated in the GDM+RESV offspring group. Glucose stimulated insulin secretion was also improved in the islets from offspring of GDM+RESV dams. Thus, maternal RESV supplementation during the third trimester of pregnancy and lactation induced several beneficial metabolic health outcomes for both mothers and offspring. Therefore, RESV could be an alternative to current GDM treatments.


Asunto(s)
Diabetes Gestacional/prevención & control , Dieta Alta en Grasa/efectos adversos , Sacarosa en la Dieta/efectos adversos , Intolerancia a la Glucosa/prevención & control , Islotes Pancreáticos/efectos de los fármacos , Resveratrol/farmacología , Animales , Antioxidantes/farmacología , Diabetes Gestacional/inducido químicamente , Femenino , Glucosa/metabolismo , Homeostasis , Islotes Pancreáticos/fisiopatología , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Ratas Sprague-Dawley , Resveratrol/administración & dosificación , Factores Sexuales
5.
Endocrinology ; 160(8): 1907-1925, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31237608

RESUMEN

Fetal exposure to gestational diabetes mellitus (GDM) and poor postnatal diet are strong risk factors for type 2 diabetes development later in life, but the mechanisms connecting GDM exposure to offspring metabolic health remains unclear. In this study, we aimed to determine how GDM interacts with the postnatal diet to affect islet function in the offspring as well as characterize the gene expression changes in the islets. GDM was induced in female rats using a high-fat, high-sucrose (HFS) diet, and litters from lean or GDM dams were weaned onto a low-fat (LF) or HFS diet. Compared with the lean control offspring, GDM exposure reduced glucose-stimulated insulin secretion in islets isolated from 15-week-old offspring, which was additively worsened when GDM exposure was combined with postnatal HFS diet consumption. In the HFS diet-fed offspring of lean dams, islet size and number increased, an adaptation that was not observed in the HFS diet-fed offspring of GDM dams. Islet gene expression in the offspring of GDM dams was altered in such categories as inflammation (e.g., Il1b, Ccl2), mitochondrial function/oxidative stress resistance (e.g., Atp5f1, Sod2), and ribosomal proteins (e.g., Rps6, Rps14). These results demonstrate that GDM exposure induced marked changes in gene expression in the male young adult rat offspring that cumulatively interact to worsen islet function, whole-body glucose homeostasis, and adaptations to HFS diets.


Asunto(s)
Diabetes Gestacional/fisiopatología , Islotes Pancreáticos/fisiología , Animales , Peso Corporal , Dieta Alta en Grasa , Femenino , Expresión Génica , Glucosa/metabolismo , Islotes Pancreáticos/patología , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley , Sacarosa/administración & dosificación
6.
J Physiol ; 593(14): 3181-97, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25922055

RESUMEN

Maternal obesity is associated with a high risk for gestational diabetes mellitus (GDM), which is a common complication of pregnancy. The influence of maternal obesity and GDM on the metabolic health of the offspring is poorly understood. We hypothesize that GDM associated with maternal obesity will cause obesity, insulin resistance and hepatic steatosis in the offspring. Female Sprague-Dawley rats were fed a high-fat (45%) and sucrose (HFS) diet to cause maternal obesity and GDM. Lean control pregnant rats received low-fat (LF; 10%) diets. To investigate the interaction between the prenatal environment and postnatal diets, rat offspring were assigned to LF or HFS diets for 12 weeks, and insulin sensitivity and hepatic steatosis were evaluated. Pregnant GDM dams exhibited excessive gestational weight gain, hyperinsulinaemia and hyperglycaemia. Offspring of GDM dams gained more weight than the offspring of lean dams due to excess adiposity. The offspring of GDM dams also developed hepatic steatosis and insulin resistance. The postnatal consumption of a LF diet did not protect offspring of GDM dams against these metabolic disorders. Analysis of the hepatic metabolome revealed increased diacylglycerol and reduced phosphatidylethanolamine in the offspring of GDM dams compared to offspring of lean dams. Consistent with altered lipid metabolism, the expression of CTP:phosphoethanolamine cytidylyltransferase, and peroxisomal proliferator activated receptor-α mRNA was reduced in the livers of GDM offspring. GDM exposure programs gene expression and hepatic metabolite levels and drives the development of hepatic steatosis and insulin resistance in young adult rat offspring.


Asunto(s)
Diabetes Gestacional/metabolismo , Hígado Graso/metabolismo , Hígado/metabolismo , Metaboloma , Obesidad/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Diabetes Gestacional/etiología , Dieta Alta en Grasa/efectos adversos , Diglicéridos/metabolismo , Hígado Graso/etiología , Femenino , Metabolismo de los Lípidos , Obesidad/etiología , PPAR alfa/genética , PPAR alfa/metabolismo , Fosfatidiletanolaminas/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Ratas , Ratas Sprague-Dawley , Sacarosa/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...